Numerical solution of second order one dimensional hyperbolic telegraph equation by cubic B-spline collocation method
نویسندگان
چکیده
The present paper uses new approach and methodology to solve second order one dimensional hyperbolic telegraph equation numerically by B-spline collocation method. It is based on collocation of modified cubic B-spline basis functions over the finite elements. The given equation is decomposed into system of equations and modified cubic B-spline basis functions have been used for spatial variable and its derivatives, which gives results in amenable system of differential equations. The resulting system of equation subsequently has been solved by SSP-RK54 scheme. The efficacy of proposed approach has been confirmed with numerical experiments, which shows the results obtained are acceptable and in good agreement with earlier studies. The advantage of this scheme is that it can be conveniently used to solve the complex problems and it is also capable of reducing the size of computational work. 2013 Elsevier Inc. All rights reserved.
منابع مشابه
Numerical Solution of One-dimensional Telegraph Equation using Cubic B-spline Collocation Method
In this paper, a collocation approach is employed for the solution of the one-dimensional telegraph equation based on cubic B-spline. The derived method leads to a tri-diagonal linear system. Computational efficiency of the method is confirmed through numerical examples whose results are in good agreement with theory. The obtained numerical results have been compared with the results obtained b...
متن کاملChebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation
In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...
متن کاملNumerical studies of non-local hyperbolic partial differential equations using collocation methods
The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...
متن کاملNumerical solution of second-order hyperbolic telegraph equation via new cubic trigonometric B-splines approach
This paper presents a new approach and methodology to solve the second-order one-dimensional hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions using the cubic trigonometric B-spline collocation method. The usual finite difference scheme is used to discretize the time derivative. The cubic trigonometric B-spline basis functions are utilized as an interpolating function...
متن کاملApplication of linear combination between cubic B-spline collocation methods with different basis for solving the KdV equation
In the present article, a numerical method is proposed for the numerical solution of the KdV equation by using a new approach by combining cubic B-spline functions. In this paper we convert the KdV equation to system of two equations. The method is shown to be unconditionally stable using von-Neumann technique. To test accuracy the error norms L2, L∞ are computed. Three invariants of motion are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 220 شماره
صفحات -
تاریخ انتشار 2013